skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Hagen, Matthias and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hagen, Matthias and (Ed.)
    Readability is a core component of information retrieval (IR) tools as the complexity of a resource directly affects its relevance: a resource is only of use if the user can comprehend it. Even so, the link between readability and IR is often overlooked. As a step towards advancing knowledge on the influence of readability on IR, we focus on Web search for children. We explore how traditional formulas–which are simple, efficient, and portable–fare when applied to estimating the readability of Web resources for children written in English. We then present a formula well-suited for readability estimation of child-friendly Web resources. Lastly, we empirically show that readability can sway children’s information access. Outcomes from this work reveal that: (i) for Web resources targeting children, a simple formula suffices as long as it considers contemporary terminology and audience requirements, and (ii) instead of turning to Flesch-Kincaid–a popular formula–the use of the “right” formula can shape Web search tools to best serve children. The work we present herein builds on three pillars: Audience, Application, and Expertise. It serves as a blueprint to place readability estimation methods that best apply to and inform IR applications serving varied audiences. 
    more » « less